Part Number Hot Search : 
38510 A5954 C2405A LCA0411 D1776 CF50603 11N60C 2SC3884
Product Description
Full Text Search
 

To Download AUIRFS4310ZTRR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10/10/11 www.irf.com 1 hexfet   power mosfet auirfs4310z s d g v dss 100v r ds(on) typ. 4.8m max. 6.0m i d (silicon limited) 127a i d (package limited) 120a  
automotive grade description specifically designed for automotive applications, this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. features advanced process technology ultra low on-resistance dynamic dv/dt rating 175c operating temperature fast switching repetitive avalanche allowed up to tjmax lead-free, rohs compliant automotive qualified * hexfet ? is a registered trademark of international rectifier. * qualification standards can be found at http://www.irf.com/ absolute maximum ratings stresses beyond those listed under ?absolute maximum ratings? may cause permanent damage to the device. these are stress rati ngs only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. exposure to absolute- maximum-rated conditions for extended periods may affect device reliability. the thermal resistance and power dissipation ratin gs are measured under board mounted and still air conditions. ambient temperature (t a ) is 25c, unless otherwise specified. gds gate drain source d 2 pak auirfs4310z s d g d symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) a i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (wire bond limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as single pulse avalanche energy (thermally limited)  mj i ar avalanche current  a e ar repetitive avalanche energy mj dv/dt peak diode recovery  v/ns t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) thermal resistance symbol parameter typ. max. units r ? jc junction-to-case  ??? 0.6 c/w r ? ja junction-to-ambient (pcb mount)  ??? 40 250 18 -55 to + 175 20 1.7 300 max. 127  90  560 120 130 see fig. 14, 15, 22a, 22b,

2 www.irf.com    calculated continuous current based on maximum allowable junction temperature. bond wire current limit is 120a. note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.   repetitive rating; pulse width limited by max. junction temperature.  limited by t jmax , starting t j = 25c, l = 0.047mh r g = 25 ? , i as = 75a, v gs =10v. part not recommended for use above the eas value and test conditions.  i sd ? 75a, di/dt ? 600a/ s, v dd ?? v (br)dss , t j ? 175c. s d g  pulse width ? 400 s; duty cycle ? 2%.  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss . when mounted on 1" square pcb (fr-4 or g-10 material). for recom mended footprint and soldering techniques refer to application note #an-994.
 ?  
    
  static electrical characteristics @ t j = 25 c ( unless otherwise specified ) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 100 ??? ??? v ? ? ? ? a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 dynamic electrical characteristics @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units q g total gate charge ??? 120 170 nc q gs gate-to-source charge ??? 29 ??? q gd gate-to-drain ("miller") charge ??? 35 ??? q sync total gate charge sync. (q g - q gd ) ??? 85 ??? t d(on) turn-on delay time ??? 20 ??? ns t r rise time ??? 60 ??? t d(off) turn-off delay time ??? 55 ??? t f fall time ??? 57 ??? c iss input capacitance ??? 6860 ??? pf c oss output capacitance ??? 490 ??? c rss reverse transfer capacitance ??? 220 ??? c oss eff. (er) effective output capacitance (energy related) ??? 570 ??? c oss eff. (tr) effective output capacitance (time related) ??? 920 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 127 a (body diode) i sm pulsed source current ??? ??? 560 a (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 40 ??? ns t j = 25 c v r = 85v, ??? 49 ??? t j = 125 c i f = 75a q rr reverse recovery charge ??? 58 ??? nc t j = 25 c di / dt = 100 a / s  ??? 89 ??? t j = 125 c i rrm reverse recovery current ??? 2.5 ??? a t j = 25 c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = -20v mosfet symbol r g = 2.7 ?  v dd = 65v i d = 75a, v ds =0v, v gs = 10v v ds = v gs , i d = 150 a v ds = 100v, v gs = 0v v ds = 80v, v gs = 0v, t j = 125c showing the v ds =50v conditions v gs = 10v  v gs = 0v v ds = 50v ? = 1.0mhz, see fig. 5 conditions v gs = 0v, i d = 250 a reference to 25c, i d = 5ma v gs = 10v, i d = 75a  v ds = 50v, i d = 75a t j = 25c, i s = 75a, v gs = 0v  integral reverse p-n junction diode. v gs = 0v, v ds = 0v to 80v  , see fig. 11 v gs = 0v, v ds = 0v to 80v  i d = 75a conditions i d = 75a v gs = 20v

www.irf.com 3    !""##$" % &!'()
%* +, $ , !# -.  !./.# qualification information ? d 2 pak msl1 qualification level automotive (per aec-q101) ?? comments: this part number(s) passed automotive qualification. ir?s industrial and consumer qualification level is granted by extension of the higher automotive level. moisture sensitivity level esd machine model class m4 (+/- 800v) ??? aec-q101-002 human body model class h2 (+/- 4000v) ??? aec-q101-001 charged device model class c5 (+/- 2000v) ??? aec-q101-005 rohs compliant yes

4 www.irf.com fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) ? 60 s pulse width tj = 25c 4.5v vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) ? 60 s pulse width tj = 175c 4.5v vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 2.0 3.0 4.0 5.0 6.0 7.0 8.0 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ? ? ) v ds = 50v ? 60 s pulse width t j = 25c t j = 175c -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 75a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 0 2000 4000 6000 8000 10000 12000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 40 80 120 160 200 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v vds= 50v vds= 20v i d = 75a

www.irf.com 5 fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 90 100 110 120 130 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e i d = 5ma 0 20 40 60 80 100 v ds, drain-to-source voltage (v) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 e n e r g y ( j ) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 11a 19a bottom 75a 0.1 1 10 100 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100 sec dc 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 120 140 i d , d r a i n c u r r e n t ( a ) limited by package

6 www.irf.com fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ?? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 100 120 140 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 75a ri (c/w) ??? ? j ? j ? 1 ? 1 ? 2 ? 2 ? 3 ? 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i ? ? ? ? ? c ? 4 ? 4 r 4 r 4

www.irf.com 7  0(!/(* /#  " fig 16. threshold voltage vs. temperature  0(!1* ./#  " 
0(!/(* /#  "  0(!1* ./#  " -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 1.0a i d = 1.0ma i d = 250 a id = 150 a 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 4 8 12 16 20 24 i r r m - ( a ) i f = 30a v r = 85v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 100 200 300 400 500 600 q r r - ( n c ) i f = 45a v r = 85v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 100 200 300 400 500 600 q r r - ( n c ) i f = 30a v r = 85v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 4 8 12 16 20 24 i r r m - ( a ) i f = 45a v r = 85v t j = 125c t j = 25c

8 www.irf.com fig 23a. switching time test circuit fig 23b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform   
  ????   ???????          + -   vds vgs id vgs(th) qgs1 qgs2 qgd qgodr 1k vcc dut 0 l s 20k   
  ?????  
 ????  
 ???? 

 
 
 !
 p.w. period di/dt diode recovery dv/dt ripple ? 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period 222   
 !""! 222 + - + + + - - -        ??? "# 
$%  ???  "
 !
&
 '('' ???   
$)) ??? '(''*
" 
(



 22 2 2 #$%&&
"

#$%&&'
&  22 "
#
 
#$%&& fig 21. //(0*  for hexfet  power mosfets

www.irf.com 9    
 
    
 (dimensions are shown in millimeters (inches))  
         
       3 $ 4. 4*  * 565 776 78 78
6
$/94:

10 www.irf.com    !" # 
 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge.  
         
    

www.irf.com 11 ordering information base part number package type standard pack complete part number form quantity auirfs4310z d2pak tube 50 auirfs4310z tape and reel left 800 auirfs4310ztrl tape and reel right 800 AUIRFS4310ZTRR

12 www.irf.com  
       
    !   "       #$    
 
     !   !
   !     !
 
                  
  %    

&'( )             *   
            
 '      + ,       
            
     
     
     
,    -  
 *  
*   
)      
  .) 
       *   !    
                          "        
           -  /
   
         !    
  *            
        
         !  !  !    
  
                   
    
     +               
       
     
        )       
                        
        !! 
 /              
 ! 
        ! 
  


 
      
  +  
  0
1 
        
 
 / !1 
  
       !  !    ! !   
     !   !  ! )  !       !     !   +  
  
 
  
 / !  
  
   
     
   2         
3 4  ' #34'$
03  3 !       34'       *     !    
   1   
      34'   5 !   *       !  
1 ,    

          
   *     
 
      
               
          
02-067898 *        
 &'(1   
!
  5        !       
 *    
   
 
  

  
 
 

  
   
     !"#


▲Up To Search▲   

 
Price & Availability of AUIRFS4310ZTRR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X